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Research Activities

1 Singular value decompositions

The singular value decomposition (SVD) has proved to be a useful tool in signal
processing. Many of the most powerful methods such as ESPRIT which is used for
directional of arrival estimation in sensor array processing use the SVD as a basic
building tool. We have gone on to generalize this decomposition for two or more
matrices and these generalizations are very useful in many applications arising in
signal processing and systems theory.

As an example, the restricted singular value decomposition (RSVD) is the factoriza-
tion of a given matrix, relative to two other given matrices. It can be interpreted as
the ordinary singular value decomposition with different inner products in row and
column spaces. Its properties and structure have been investigated in detail as well as
its connection to generalized eigenvalue problems, canonical correlation analysis and
other generalizations of the singular value decomposition.

Applications include the analysis of the extended shorted operator, unitarily invariant
norm minimization with rank constraints, rank minimization in matrix balls, the
analysis and solution of linear matrix equations, rank minimization of a partitioned

matrix and the connection with generalized Schur complements, constrained linear
and total linear least squares problems, with mixed exact and noisy data, including a
generalized Gauss-Markov estimation scheme.

A constructive proof of the RSVD based upon the ordinary and the product singular
value decomposition has been derived.

(Joint work with Bart De Moor)

2 Chebyshev, Krylov and Lanczos

We consider functions that are orthogonal with respect to a given symmetric inner-

product. A new derivation of the fundamental relationship between orthogonal func-
tions and their representation in non-orthogonal bases is given.

Given a basis of linearly independent polynomials, the modified Chebyshev algorithm
constructs the set of orthogonal polynomials corresponding to the inner-product. We
present a characterization of the algorithm in terms of transformations between poly-
nomial bases. This leads to generalized Krylov sequences and demonstrates the equiva-
lence of the modified Chcbyqhev algorithm and the Lanczos algorithm for determining
eigenvalues of linear operators.

Block generalized Krylov sequences (of which the block Lanczos algorithm is a special
case) are shown to produce matrix polynomials whose linearization is the matrix uqed
to generate the Kryiov sequence.

This theoretical work leads to a better understanding of the important Lanczos al-
gorithm and its variants. Immediate applications include determining optimal pa-
rameters and error bounds for certain iterative methods for solving systems of linear
equations.

(Thesis of Mark Kent)
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3 Quadratic problems with constraints

In many situations in signal processing, one needs to minimize a quadratic form sub-

ject to a quadratic constraint or to linear constraints which are inhomogeneous. The
quadratic constraint problem requires the solution of a lagrange multiplier that satis-
fies a quadratic eigenvalue problem. The difficulty in solving the lagrange multiplier is

that the eigervalues of the original matrix must be known precisely. We have recently

developed an elegant algorithm which yields upper and lower bounds on the lagrange
multiplier. The key idea is to approximate the secular equation by an integral and
then bound the integral using the ideas of Gauss-Radau integration.

The Lanczos algorithm is used for determining the orthogonal polynomials which
are required when computing the quadrature rule. The details of this approach will

soon appear in a report, "A Constrained Least Squares Problem", which is being co-
authored by Golub and Von Matt.

4 Orthogonal Polynomials

Orthogonal polynomials occur in many contexts in applied mathematics, but are es-

pecially relevant to data fitting. They have the property of stabilizing the delicate
problem of fitting polynomials to data in least squares problems. In many situations,

the data arrives in a sequential manner, and this requires the updating of the coeffi-
cients of the three term recursions used in generating the polynomials.

In some cases, one has a sliding window so that a new point is added as one point of
data is deleted. We have developed algorithms which allow for performing these calcu-

lations in a very satisfactory manner. Our study of updating orthogonal polynomials
has led to algorithms for handling data where several processors are available. That.

is, we are able to subdivide a large set of data into subsets and, then after computing

the recursion relations on each subset, we are able to combine the coefficients in an

efficient manner. This leads to a highly parallel algorithm which is also quite efficient.
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5 Beam Forming

In various applications, it is necessary to keep track of a low-rank approximation of
a covariance matrix, R(t), slowly varying with time. It is convenient to track the left
singular vectors associated with the largest singular values of the triangular factor,
L(t), of the Cholesky factorization. These algorithms are referred to as "square root".
The drawback to those applications is the volume of the computational burden of
the Eigenvalue Decomposition or the Singular Value Decomposition (SVD). Various
numerical methods carrying out this task have been performed, and we show why this
point is in fact questionable in numerous situations and should be revised. Indeed,

the complexity per eigenpair is generally a quadratic function of the problem size, but
there exist faster algorithms whose complexity is linear. Finally in order to make a
choice among the large and fuzzy set of available techniques, we have made compar-
isons based on computer simulations in the relevant signal processing context.

A report, "Tracking a Few Singular Values and Vectors in Signal Processing", by
Pierre Comon and Gene Golub has recently been completed and submitted for pub-
lication.

6 Least squares with a quadratic constraint.

We consider the following problem: Compute a vector x such that l1Ax - b112 = min,

subject to the constraint Ijxj12 = a. A new approach to this problem based on
Gauss quadrature has been derived. The mcthod is especially well suited where the
dimensions of A are large and the matrix is sparse.

The heart of the new method consists in the computation of a partial bidiagonalization
of the matrix A, which is often all one can do in these settings.

(Joint work with Urs Von Matt).

7 Recursive condition estimation.

Estimates for the condition number of a matrix are required in many application
areas of scientific computing, including: optimization, least squares computations,
eigenanalysis, and general nonlinear problems solved by linearization techniques. Our

purpose is to develop some adaptive condition estimators, based on the Lanczos algo-
rithm, and test them on recursive least squares (RLS) computations arising in control
and signal processing. RLS algorithms are known to suffer from numerical instability

problems under finite word-length conditions.

We have provided an adaptive Lanczos schemes for estimating the smallest aid largest
singular values of R, ani,(R) and amax(R), respectively, for each recursive update
or downdate step for R (or R - 1 in the covariance method). The computations are
adaptive in the sense that estimates at time t are used to obtain estimates at time

t+ 1.

(Joint Work with W. Ferng and R. Plemmons)
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8 The Lanczos algorithm and controlability

We derive a non-symmetric Lanczos algorithm that does not require strict bi-orthogonality
among the generated vectors. We show how the vectors generated are algebraically
related to "Controllable Space" and "Observable Space" for a related linear dynamical
system.

The Lanczos Algorithm was originally proposed by Lanczos as a method for the com-
putation of eigenvalues of symmetric and nonsymmetric matrices. The idea was to
reduce a general matrix to tridiagonal form, from which the eigenvalues could be easily
determined. The nonsymmetric Lanczos Algorithm has received much less attention
than the symmetric case. Besides some numerical stability problems, the method
suffers from the possibility of a breakdown from which the only way to "recover" was
to restart the whole process from the beginning with different starting vectors . This
problem was not solved until comparatively recently.

The Lanczos Algorithm is an example of a method that generates bases for Krylov
subspaces starting with a given vector. In previous paper , we have examined how
another closely related method, the Arnoldi Algorithm, may be used to compute
the controllable space for a linear time-invariant dynamical system. The Arnoldi
Algorithm can be thought of as a "one-sided" method, which generates one sequence
of vectors that span the controllable space. We have extended this idea to the use
of a two-sided method, the non-symmetric Lanczos Algorithm, which generates two
sequences of vectors spanning the left and right Krylov spaces corresponding to the
controllable and the observabt(le spaces. We have demonstrated how the vectors are
generated in such a way that we obtain bases not only for the left and right Krylov
spaces, but also for the intersections of these spaces and the complementary spaces.


